Infinite Limits

$$f(x) = \frac{3}{(x-2)^2} \begin{bmatrix} x & f(x) = \frac{3}{(x-2)^2} & x & f(x) = \frac{3}{(x-2)^2} \\ 1 & 3 & \\ 1.5 & 2.5 & \\ \frac{2}{3} & 2\frac{1}{3} & \\ 1.75 & 2.25 & \\ 1.9 & 2.1 & \\ 1.99 & 2.01 & \\ \end{bmatrix}$$

1.999

2.001

<u>Definition</u>: Let f be a function that is defined at every number in some open interval containing a, except possibly at a itself. As x approaches a, f(x) increases without bound, which is written $\lim_{x\to a} f(x) = +\infty$ if for any number N>0, however large, $\exists\,\delta>0$ such that if

Let
$$f(x) = -\frac{3}{(x-2)^2}$$

<u>Definition</u>: Let f be a function that is defined at every number in some open interval containing a, except possibly at a itself. As x approaches a, f(x) decreases without bound, which is written $\lim_{x\to a} f(x) = -\infty$ if for any number $N<0,\ \exists\,\delta>0$, such that if

$$f(x) = \frac{2x}{x+1}$$

<u>Definition</u>: The line x = a is said to be a vertical asymptote of the graph of the function f if at least one of the following statements is true:

a.
$$\lim_{x \to a^+} f(x) = +\infty$$

b.
$$\lim_{x \to a^+} f(x) = -\infty$$

$$\text{C. } \lim_{x \to a^{-}} f(x) = +\infty$$

$$\text{d. } \lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = +\infty$$

Infinite Limit Theorem and Vertical Asymptotes

If a is any real number and if $\lim_{x\to c}g(x)=0$ and $\lim_{x\to c}f(x)=a\neq 0$, then:

- a. If a > 0 and $g(x) \to 0$ through positive values of g(x),
 - $\lim_{x \to c} \frac{f(x)}{g(x)} =$ and f has a vertical asymptote at x = c.
- b. If a > 0 and $g(x) \to 0$ through negative values of g(x),

$$\lim_{x \to c} \frac{f(x)}{g(x)} =$$
 and f has a vertical asymptote at $x = c$.

c. If a < 0 and $g(x) \rightarrow 0$ through positive values of g(x),

$$\lim_{x \to c} \frac{f(x)}{g(x)} =$$
 and f has a vertical asymptote at $x = c$.

d. If a < 0 and $g(x) \rightarrow 0$ through negative values of g(x),

$$\lim_{x \to c} \frac{f(x)}{g(x)} =$$
 and f has a vertical asymptote at $x = c$.

The theorem is also valid if $x \to c$ is replaced by $x \to c^+$ or $x \to c^-$.

Also, it is still the case that if $\lim_{x\to c} f(x)=0$ and $\lim_{x\to c} g(x)=0$, that we have an indeterminate form when evaluating

$$\lim_{x \to c} \frac{f(x)}{g(x)}.$$

THEOREM Properties of Infinite Limits

Let c and L be real numbers and let f and g be functions such that

$$\lim_{x\to c} f(x) = \infty \quad \text{and} \quad \lim_{x\to c} g(x) = L.$$

1. Sum or difference:
$$\lim_{x\to c} [f(x) \pm g(x)] =$$

2. Product:
$$\lim_{x\to c} [f(x)g(x)] = , \qquad L > 0$$

$$\lim_{x\to c}[f(x)g(x)] = , \quad L < 0$$

3. Quotient:
$$\lim_{x \to c} \frac{g(x)}{f(x)} =$$

Similar properties hold for one-sided limits and for functions for which the limit of f(x) as x approaches c is $-\infty$.

Find each of the following limits and sketch a local graph illustrating the limit you have found.

$$\lim_{x \to 2^+} \frac{x+3}{x-2}$$

$$\lim_{x \to 2^+} \frac{x-5}{x-2}$$

$$\lim_{x \to 3^{-}} \frac{1-x}{x-3}$$

$$\lim_{x \to 3^-} \frac{2x-1}{x-3}$$

$$\lim_{x \to 2^+} \frac{x+1}{x^2 - 8x + 12}$$

$$\lim_{x\to 2}\frac{x^3-8}{x-2}$$

$$\lim_{x \to 5^+} \frac{x^2 - 9}{x^2 - 3x - 10}$$

$$\lim_{x \to 5^{-}} \frac{x^2 - 9}{x^2 - 3x - 10}$$

$$\lim_{x \to -2^{-}} \frac{x^2 - 9}{x^2 - 3x - 10}$$

$$\lim_{x \to -2^+} \frac{x^2 - 9}{x^2 - 3x - 10}$$

$$\lim_{x\to 2^+}\frac{x^2-4}{x-2}$$

$$\lim_{x\to 0^-} \left(\frac{1}{x^2} - \frac{1}{x}\right)$$

$$\lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x} \right)$$

$$\lim_{x \to 2^{-}} \frac{[[x]] - x}{2 - x}$$

$$\lim_{x \to 2^+} \left(\frac{3}{x^2 - 5x + 6} - \frac{1}{x - 2} \right)$$

$$\lim_{x \to 2^{-}} \left(\frac{3}{x^2 - 5x + 6} - \frac{1}{x - 2} \right)$$

<u>True or false</u>: If p(x) is a polynomial, then the function given by $f(x)=\frac{p(x)}{x-1}$ has a vertical asymptote at x=1.